New Acetyl Derivatives from Antarctic Delisea fimbriata

Mercedes Cueto and José Darias*

Instituto de Productos Naturales y Agrobiología de Canarias, CSIC. Avda. Astrofisico Fco. Sánchez 3, Apdo. 195, 38206 La Laguna, Tenerife, Canary Islands, Spain

Aurelio San-Martín and Juana Rovirosa

Dpto. Química, Facultad de Ciencias, Universidad de Chile, Santiago de Chile, Chile

Received January 9, 1996[®]

Compounds with three characteristic skeletons of members of the family Bonnemaisoneaceae were found to coexist in the alga *Delisea fimbriata*. The two new acetates **1** and **2a** were also isolated; this is the first isolation of acetates from this genus. The structures, chemical transformation, and biogenetic significance of **1** and **2a** are described.

The significant *in vitro* antimicrobial and antifungal activity of the extracts of several species of red algae within the family Bonnemaisoniaceae has led to the search for new metabolites from collections covering a wide geographic range. Seaweed from the genera Asparagopsis, Delisea, Ptilonia, and Bonnemaisonia have been studied and have proven to be a rich source of secondary metabolites based almost exclusively on acetate biosynthesis, which appears to be characteristic of the family.¹ The genus Asparagopsis has the particular property of producing halogenated substances² whose framework contains up to four carbon atoms, including methane, acetones, propanols, butenones, and acrylic and acetic acid derivatives, while genera such as Delisea, Ptilonia, and Bonnemaisonia display a variety of polyhalogenated compounds with between seven²⁻⁶ and nine⁷⁻¹⁷ carbon atoms, with the exception of a 12-carbon-atom metabolite recently isolated.8

Here, we report on the new metabolites **1** and **2a** from *Delisea fimbriata* (Lamour) as well as the reisolation of the polyhalogenated unsaturated ketones **3** and **4**⁷ and the fimbrolides **5**–**8**^{11–12} showing for the first time the coexistence of compounds derived from seven (compound **1**), eight (**2a**, **3**, and **4**), and nine (**5**–**8**) carbon atom skeletons found in the same species. *D. fimbriata* was collected by scuba off King George Island (South Shetland, Antarctic) at a depth of 30 m. Fractions of A–C were obtained by flash chromatography of the crude algal extract. The hexane:EtOAc (9:1) fraction from the chromatography column of portion B yielded a mixture of four components from which compounds **1** and **2a** were separated by recycling-HPLC.

Compound **1** was a colorless oil. The EIMS showed the molecular ion at m/z 313/315/317 with relative intensity for two bromine atoms in accordance with the empirical formula C₉H₁₆Br₂O₂. The ions at m/z 143 and m/z 83 were assigned to the fragments **I** and **I**–AcOH, respectively. The ¹H NMR spectrum (200 MHz, CDCl₃) showed signals for the methyl group of an acetate [δ 2.15 (3H, s)] and an *n*-pentyl chain at δ 1.82 (2H, m), 1.32 (6H, m), and 0.96 (3H, broad s), which suggested the presence of fragment **I**. Other ¹H NMR signals appeared at δ 5.08 (1H, dt) and at δ 5.75 (1H, d, J = 3.35 Hz). Homonuclear proton-decoupling experiments

allowed the establishment of fragment **II**. The proton signal at δ 1.82 showed coupling to the doublet of triplets proton at δ 5.08, and irradiation of the methylene at δ 1.82 collapsed the signal at δ 5.08 to a doublet that possesses a coupling constant similar to that of the proton situated at δ 5.75. This shows that the two methines at δ 5.08 and δ 5.75 are adjacent, thus allowing the partial establishment of structure **II**. Consequently, the complete structure for the compound can be established as **1**, where the bromine atoms are the substituents at C-1.

Compound 2a was also a colorless oil. The IR spectrum gave an absorption for an acetate group at 1743 cm⁻¹. The CIMS showed the molecular ion (M⁺ + 1) at m/z 405/407/409/411 with relative intensity for three bromine atoms in accordance with the empirical formula C10H15Br3O2. The EIMS gave fragments at m/z 325/327/329 (M⁺ – Br) and m/z 83 (C₆H₁₁). The ¹H NMR spectrum showed signals at δ 2.10 (3H, s) and δ 5.70 (1H, t, J = 7.16 Hz) for the methyl and geminal protons, respectively, corresponding to a secondary acetate group. At δ 0.89 (3H, broad s), 1.73 (2H, m), and 1.25 (6H, m), typical signals for an n-pentyl chain appeared. The ¹³C NMR showed the following 10 signals: two methyl groups at δ 20.79 (q) and 13.93 (q), four methylenes at δ 22.40 (t), 24.28 (t), 31.34 (t), and 32.82 (t), two olefinic carbons at δ 128.98 (s) and 91.16 (s), and the signals at δ 74.80 (d) and 169.72 (s) belonging to a methine and carbonyl group, respectively.

According to the degree of unsaturation expressed in the empirical formula, the compound should be linear. Because the molecule contains a tetrasubstituted double bond and an acetyl group, because five of the 10 carbon

^{*} To whom correspondence should be addressed. Phone 34 22 256847. Fax: 34 22 260135.

[®] Abstract published in *Advance ACS Abstracts*, February 1, 1997.

atoms of the molecule form an *n*-pentyl chain, and because the multiplicity of the proton on the carbonbearing acetate group is a triplet, it can be stated that the substituents on the olefinic double bond are bromine and that the structure for the compound must be **2a**. The structure **2a** was confirmed by partial synthesis starting from **3**. Reduction of **3** with NaBH₄ in methanol at room temperature for 1 h gave the alcoholic derivative **2b** (δ 4.72, 1H, t, J = 6.0 Hz), which was acetylated to give a material whose ¹H-NMR spectrum was identical to the natural compound.

Fraction A, eluted with hexane–EtOAc (9:1), was chromatographed on R-HPLC using chloroform as eluent, affording the known compounds **3** and **4**, which have ¹H-NMR data identical to those previously reported.^{7,10} Likewise, the other two products **5** and **6** of the fraction B were purified and their structures identified.¹¹

Fraction C, which eluted with hexane–EtOAc (8:2), was chromatographed on R-HPLC (CHCl₃), yielding **7** and **8**, which were identical (¹H-NMR) to the acetoxy-fimbrolides previously isolated¹¹ from *D. fimbriata*.

From a study of the marine chemical literature of the Bonnemaisoniaceae it was interesting to note^{1,3–17} that, within the family, the naturally occurring halogenated metabolites containing an acetate function appeared to be exclusive to the genera *Bonnemaisonia* and *Ptilonia*. The ocurrence of the acetylate compounds **1** and **2a** in *Delisea* is a novelty because until now the genus has been characterized by producing only polyhalogenated ketones. The compound **1** is also interesting from a biogenetic point of view. It appeared as the simplest, and probable biogenetic precursor, of most of the metabolites with a seven-carbon-atom skeleton coming from members of the family of the red algae Bonnemai-soniaceae.

Experimental Section

General Experimental Procedures. Optical rotations were measured on a Perkin-Elmer Model 241 polarimeter using a Na lamp at 25 °C. IR spectra were obtained with a Perkin-Elmer 1650/FTIR spectrometer in CHCl₃ solutions. EI mass spectra (EIMS) spectra were taken on a Hewlett-Packard 5995; CIMS were determined with a Hewlett-Packard 5998 using methane as the reactive gas and HRMS on a VG Micromass ZAB-2F spectrometer. ¹H NMR and ¹³C NMR spectra were measured employing a Bruker AMX 200 instrument operating at 200 MHz for ¹H NMR and 50 MHz for ¹³C NMR, using TMS as internal standard. Recycling-HPLC separations were performed with a Japan Analytical LC-908, and the solvent utilized was chloroform. Merck silica gel 7734 and 7729 were used for column chromatography. The spray reagent for TLC was H₂SO₄:H₂O:AcOH (1:4:20).

Plant Material. *D. fimbriata* was collected by scuba off King George Island (South Shetland, Antarctic) at a depth of 30 m. A voucher specimen has been deposited at the Museo de Historia Natural, Santiago de Chile (no. R23B78Df).

Extraction and Isolation. The dried alga (61 g) was extracted with acetone at room temperature, and the acetone extract was concentrated to give a dark green residue (404 mg). This extract was chromatographed by flash chromatography on silica gel. Fraction

A, which eluted with hexane–EtOAc (9:1) (53 mg), was chromatographed on R-HPLC (CHCl₃), affording **3** (27.4 mg) and **4** (2.0 mg). Fraction B, which also eluted with hexane–EtOAc (9:1) (83.3 mg), was chromatographed on R-HPLC (CHCl₃), affording **1** (27.4 mg), **2a** (2.0 mg), **5** (14.4 mg), and **6** (5.6 mg). Fraction C, which eluted with hexane–EtOAc (8:2) (98.8 mg), was chromatographed on R-HPLC (CHCl₃), affording **7** (4.7 mg) and **8** (22.8 mg).

Compound 1: colorless oil; $[\alpha]_D \ 0^\circ (c \ 0.2, \text{ CHCl}_3)$; ¹H NMR (200 MHz, CDCl₃) $\delta \ 0.90$ (3H, broad s), 1.33 (6H, m), 1.82 (2H, m), 2.15 (3H, s), 5.08 (1H, dt), 5.75 (1H, d, J = 3.55 Hz); EIMS $m/z \ 314/316/318 \text{ [M}^+\text{]}$, 197/ 199/201 [C₃H₃Br₂], 143 [M⁺ - CHBr₂], 117/119 [C₃H₂-Br], 83 [C₆H₁₁].

Compound 2a: colorless oil; $[\alpha]_D 0^\circ$ (*c* 0.28, CHCl₃); IR (CHCl₃) ν max 1743 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 0.89 (3H, broad s), 1.25 (6H, m), 1.73 (2H, m), 2.10 (3H, s), 5.70 (1H, t, *J* = 7.16 Hz); ¹³C NMR (50 MHz, CDCl₃) δ 13.93 (q), 20.79 (q), 22.40 (t), 24.28 (t), 31.34 (t), 32.83 (t), 74.80 (d), 91.16 (s), 128.89 (s), 169.72 (s); EIMS *m*/*z* 325/327/329 [M⁺ - Br], 283/285/287 [M⁺ - Br - (CH₂)₃ - AcOH], 83 [C₆H₁₁], CIMS 403/405/407/409 [M⁺ - 1], 405/407/409/411 [M⁺ + 1], 433/435/437/439 [M⁺ + 29], 445/447/449/451 [M⁺ + 41], HRMS *m*/*z* [M⁺ - Br] 328.9415, calcd for C₁₀H₁₅O₂⁸¹Br₂ found 328.9561.

Reduction of 3. A solution of **3** (10 mg) in dry EtOH (2 mL) was treated with NaBH₄ and stirred at room temperature for 1 h. The solution was poured into water and extracted with CHCl₃. The organic layer was washed with H_2O , dried (Na₂SO₄), and concentrated to obtain 10 mg of **2b**.

Compound 2b: colorless oil; ¹H NMR (200 MHz, CDCl₃) δ 0.88 (3H, broad s), 1.32 (6H, m), 1.62 (2H, m), 4.72 (1H, t, J = 6.0 Hz); EIMS m/z 283/285/287 [M⁺ – Br], 265/267/269 [M⁺ – Br – H₂O], 223/225/227 [M⁺ – Br – H₂O – (CH₂)₃], 83 [C₆H₁₁].

Acetylation of Compound 2b. A solution of 2b (10 mg) in dry C_5H_5N (2 mL) was treated with Ac₂O (0.25 mL) and stirred at 0 °C for 1.5 h, and then it was poured into 10% aqueous HCl and extracted with CHCl₃. The organic layer was washed with H₂O and brine, dried (Na₂SO₄), and concentrated. The residue was purified by R-HPLC to give 4 mg of **2a**, identical (¹H-NMR) to the naturally occurring compound.

Acknowledgment. This work was supported by the Comisión Interministerial de Ciencia y Tecnología (ANT94-0047) and INACH. M.C. acknowledges a fellowship from the Programa Nacional de la Antártida. We are grateful to Dra. Eliana Ramírez (Museo de Historia Natural de Chile) for the taxonomic classification of the alga.

References and Notes

- (1) McConnell, O. J.; Fenical, W. Phytochemistry 1980, 19, 233-247.
- (2) Burreson, B. J.; Moore, R. E.; Roller, P. Tetrahedron Lett. 1975, 7, 473–476.
- (3) Siuda, J. F.; VanBlaricom, G. R.; Shaw, P. D.; Johnson, R. D.; White, R. H.; Hager, L. P.; Rinehart, K. L. J. Am. Chem. Soc. 1975, 97, 937–938.
- (4) McConnell, O. J.; Fenical, W. *Tetrahedron Lett.* **1977**, *48*, 4159–4162.
- (5) Jacobsen, N.; Madsen, J. O. *Tetrahedron Lett.* **1978**, *33*, 3065–3068.
- (6) Nicod, F.; Tillequin, F.; Vaquette, J. J. Nat. Prod. 1987, 50, 259– 260.

- (7) Rose, A. F.; Pettus, J. A.; Sims, J. J. Tetrahedron Lett. 1977, 22, (8) Nys, R.; Coll, J. C.; Bowden, B. F. Aust. J. Chem. 1992, 45, 1625-
- 1632.
- (9) McConnell, O. J.; Fenical, W. Tetrahedron Lett. 1977, 89, 1851-1854.
- 1854.
 (10) Kazlauskas, R.; Lidgard, R. O.; Wells, R. J. *Tetrahedron Lett.* **1978**, *34*, 3165–3168.
 (11) Kazlauskas, R.; Murphy, P. T.; Quinn, R. J.; Wells, R. J. *Tetrahedron Lett.* **1977**, *1*, 37–40.
 (12) Pettus, J. A.; Wing, R. M.; Sims, J. J. *Tetrahedron Lett.* **1977**, *1*, *A*1–*A*4
- 41 44.
- (13) Beechan, C. M.; Sims, J. J. Tetrahedron Lett. 1979, 19, 1649-1652.
- (14) McCombs, J. D.; Blunt, J. W.; Chambers, M. V.; Munro, M. H. G.; Robinson, W. T. Tetrahedron 1988, 44, 1489-1502.
- (15) Ohta, K. Agric. Biol. Chem. 1977, 41, 21 05-2110.
- (16) Jefford, C. W.; Jaggi, D.; Boukouvalas, J. *Tetrahedron Lett.* 1989, *30*, 1237–1240.
- (17) Nys, R.; Wright, A. D.; König, G. M.; Sticher, O. Tetrahedron **1993**, *49*, 11213–11220.

NP960175F